Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Anthropometric Specifications for the Six-Year-Old OCATD

2001-03-05
2001-01-1057
Advanced airbag systems use information from a variety of sensors to tune the airbag performance for crash severity and occupant characteristics. A new family of Occupant Classification ATDs (OCATD) have been developed for use in the design and testing of advanced airbag systems. This paper describes the development of anthropometric standards for an OCATD that represents a typical six-year-old child. Detailed analyses of existing child anthropometry databases were conducted to develop reference dimensions. A child who closely matched the reference dimensions was measured in a variety of conditions. A custom molded measurement seat was constructed using foam-in-place seating material. The surface of the child's body was scanned as he sat in the custom seat, and the three-dimensional locations of body landmarks defining the skeleton position were recorded.
Technical Paper

Development of Performance Specifications for the Occupant Classification Anthropomorphic Test Device (Ocatd)

2001-06-04
2001-06-0063
Advanced airbag systems use a variety of sensors to classify vehicle occupants so that the airbag deployment can be modulated accordingly. One potential input to such systems is the distribution of pressure applied to the seat surface by the occupant. However, the development of such systems is hindered by the lack of suitable human surrogates. The OCATD program has developed two new surrogates for advanced airbag applications representing a small adult woman and a six-year-old child. This paper describes the development of performance specifications for the OCATDs based on a study of the seat surface pressure distributions produced by vehicle occupants. The pressure distributions of sixty-eight small women and children ranging in body weight between 23 and 48 kg were measured on four seats in up to twelve postures per seat. The data were analyzed to determine the parameters of the pressure distribution that best predict occupant body weight.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Development of a New Seating Accommodation Model

1996-02-01
960479
Dynamic seat-position testing conducted recently at UMTRI on several different vehicles indicates that, in many cases, the current seating accommodation model represented in SAE J1517 does not accurately predict the distribution of driver seat positions. In general, J1517 tends to predict population percentile seat positions that are forward of observed percentile seat positions, and differences can be as much as 60 mm. It was hypothesized that vehicle factors other than seat height can have substantial and independent effects on driver seat position. The effects of steering-wheel position, seat height, seat-cushion angle, and transmission type on driver fore/aft seat position are being investigated, and results are being used to develop a new driver seating accommodation model called SAM.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Driver Perceptual Adaptation to Nonplanar Rearview Mirrors

1996-02-01
960791
This study examined perceptual adaptation to nonplanar (spherical convex and aspheric) rearview mirrors. Subjects made magnitude estimates of the distance to a car seen in a rearview mirror. Three different mirrors were used: plane, aspheric (with a large spherical section having a radius of 1400 mm), and simple convex (with a radius of 1000 mm). Previous research relevant to perceptual adaptation to nonplanar mirrors was reviewed. It was argued that, in spite of some cases of explicit interest in the process of learning to use nonplanar mirrors, previous research has not adequately addressed the possibility of perceptual adaptation. The present experiment involved three phases: (1) a pretest phase in which subjects made distance judgments but received no feedback, (2) a training phase in which they made judgments and did receive feedback, and (3) a posttest phase with the same procedure as the pretest phase.
Technical Paper

Driver Status and Implications for Crash Safety

2006-10-16
2006-21-0028
Almost a million people are killed worldwide each year in motor vehicle crashes, over 42,000 of them in the U.S. Human/driver error (or induced error) is the most commonly identified contributing cause according to crash studies, especially studies conducted in the U.S. Accordingly, if crashes are to be reduced, a human-centered approach is needed. As part of its Intelligent Transportation Systems program, the U.S. Department of Transportation (U.S. DOT) is funding several major projects (e.g., VII, IVBSS) concerned with active safety, warnings, and communications. As part of these and other projects, several meta-issues have arisen that deserve further attention.
Technical Paper

Effective Utilization of In-Vehicle Information: Integrating Attractions and Distractions

2000-11-01
2000-01-C011
The modern passenger vehicle contains numerous sources of information. In one sense, all of the messages sent from in-vehicle devices are attractive, at least from the viewpoint of the designer who has incorporated them into the vehicle to make driving more pleasurable and safer. Yet in another sense, these same messages can present distractions to the driver resulting in diminished driving pleasure and possibly unsafe vehicle control. Thus, a message that at one moment might be attractive and useful to the driver, at a different moment, especially one where attention must be focused outside the vehicle, becomes an unwanted distraction. This paper reviews three sources of in-vehicle information: advanced traveler information systems, safety and collision avoidance systems, and convenience and entertainment systems. A framework for integrating these sub-systems is outlined based upon human-centered design principles and functional characteristics of systems.
Technical Paper

Effects of Driver Characteristics on Seat Belt Fit

2013-11-11
2013-22-0002
A laboratory study of posture and belt fit was conducted with 46 men and 51 women, 61% of whom were age 60 years or older and 32% age 70 years or older. In addition, 28% of the 97 participants were obese, defined as body mass index ≥ 30 kg/m2. A mockup of a passenger vehicle driver's station was created and five belt anchorage configurations were produced by moving the buckle, outboard-upper (D-ring), and outboard-lower anchorages. An investigator recorded the three-dimensional locations of landmarks on the belt and the participant's body using a coordinate measurement machine. The location of the belt with respect to the underlying skeletal structures was analyzed, along with the length of belt webbing. Using linear regression models, an increase in age from 20 to 80 years resulted in the lap belt positioned 18 mm further forward relative to the pelvis, 26 mm greater lap belt webbing length, and 19 mm greater shoulder belt length.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

Effects of Large-Radius Convex Rearview Mirrors on Driver Perception

1997-02-24
970910
The U.S. currently requires that reai-view mirrors installed as original equipment in the center and driver-side positions be flat. There has recently been interest in using nonplanar mirrors in those positions, including possibly mirrors with large radii (over 2 m). This has provided additional motivation to understand the effects of mirror curvature on drivers' perceptions of distance and speed. This paper addresses this issue by (1) reviewing the concepts from perceptual theory that are most relevant to predicting and understanding how drivers judge distance in nonplanar rearview mirrors, and (2) reviewing the past empirical studies that have manipulated mirror curvature and measured some aspect of distance perception. The effects of mirror curvature on cues for distance perception do not lead to simple predictions. The most obvious model is one based on visual angle, according to which convex mirrors should generally lead to overestimation of distances.
Technical Paper

Evaluation of the SAE J826 3-D Manikin Measures of Driver Positioning and Posture

1994-03-01
941048
This study was initiated to evaluate the performance of the SAE J826 3-D manikin in seats that span a range of cushion firmness and contour levels. The manikin measures of H-point location, seatback angle, and seatpan angle (measured using a modified-manikin procedure) are compared with the human measures of hip-joint-center (HJC) location, torso angle, and thigh angle for forty drivers. The results indicate that the manikin H-point provides a reasonably consistent, though somewhat offset, measure of driver HJC location for the range of seats tested. This study found that seats with the same manikin-measured seatback angle produce different occupant torso angles. The data also suggest that for a given vehicle seat, the manikin-measured seatback angle can be used to predict the change in torso angle produced by adjusting the seatback inclination.
Technical Paper

Facial, Periorbital and Ocular Injuries Related to Steering-Wheel Airbag Deployments

1997-02-24
970490
To determine the frequency of facial injuries from steering-wheel airbag deployments, 540 consecutive steering-wheel airbag deployments, investigated by the University of Michigan Transportation Research Institute (UMTRI) personnel, were reviewed. About 1 in 3 drivers sustain an injury to the face. Injuries to the area surrounding the eye (periorbital) or to the eyeball (ocular) rarely occur. The frequencies of facial or ocular injuries are the same for belted and unbelted drivers. Drivers of short stature had a higher frequency of facial injury. Females sustained ocular injuries more frequently than males. Untethered airbags were not overly involved in drivers with an ocular injury. No specific make or model car were overly represented in the ocular injury cases.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Human Subject Testing in Support of ASPECT

1999-03-01
1999-01-0960
The ASPECT program, conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools, used posture and position data from hundreds of vehicle occupants to develop a new physical manikin and related tools. Analysis of the relationships between anthropometric measures established the criteria for subject selection. The study goals and the characteristics of the data collected determined the sampling approach and number of subjects tested in each study. Testing was conducted in both vehicle and laboratory vehicle mockups. This paper describes the subject sampling strategies, anthropometric issues, and general data collection methods used for the program's eight posture studies.
Technical Paper

Improved ATD Positioning Procedures

2001-03-05
2001-01-0117
Current anthropomorphic test device (ATD) positioning procedures for drivers and front-seat passengers place the crash dummy within the vehicle by reference to the seat track. Midsize-male ATDs are placed at the center of the fore-aft seat track adjustment range, while small-female and large-male ATDs are placed at the front and rear of the seat track, respectively. Research on occupant positioning at UMTRI led to the development of a new ATD positioning procedure that places the ATDs at positions more representative of the driving positions of people who match the ATD's body dimensions. This paper presents a revised version of the UMTRI ATD positioning procedure. The changes to the procedure improve the ease and repeatability of ATD positioning while preserving the accuracy of the resulting ATD positions with respect to the driving positions of people matching the ATD anthropometry.
Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

2008-11-03
2008-22-0008
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Investigating Driver Headroom Perception: Methods and Models

1999-03-01
1999-01-0893
Recent changes in impact protection requirements have led to increased padding on vehicle interior surfaces. In the areas near the driver's head, thicker padding can reduce the available headspace and may degrade the driver's perception of headroom. A laboratory study of driver headroom perception was conducted to investigate the effects of physical headroom on the subjective evaluation of headroom. Ninety-nine men and women rated a range of headroom conditions in a reconfigurable vehicle mockup. Unexpectedly, driver stature was not closely related to the perception of headroom. Short-statured drivers were as likely as tall drivers to rate a low roof condition as unacceptable. Statistical models were developed from the data to predict the effects of changes in headroom on the percentage of drivers rating the head-room at a specified criterion level.
X